Dynamic-then-Static Approach for Core Excitations of Open-Shell Molecules

Zhao, R.; Grofe, A.; Wang, Z.; Bao, P.; Chen, X.; Liu, W.; Gao, J..  J. Phys. Chem. Lett., 202112, 31, 7409–7417. 

Delta self-consistent-field methods are widely used in studies of electronically excited states. However, the nonaufbau determinants are generally spin-contaminated. Here, we describe a general approach for spin-coupling interactions of open-shell molecules, making use of multistate density functional theory (MSDFT). In particular, the effective exchange integrals that determine spin coupling are obtained by enforcing the multiplet degeneracy of the S+1 state in the MS = S manifold. Consequently, they are consistent with the energy of the high-spin state that is adequately treated by Kohn–Sham density functional theory (DFT) and, thereby, free of double counting of correlation. The method was applied to core excitations of open-shell molecules and compared with those by spin-adapted time-dependent DFT. An excellent agreement with experiment was found employing the BLYP functional and aug-cc-pCVQZ basis set. Overall, MSDFT provides an effective combination of the strengths of DFT and wave function theory to achieve efficiency and accuracy.